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Abstract

Representing documents by vectors that are
independent of language enhances machine
translation and multilingual text categoriza-
tion. We use discriminative training to create
a projection of documents from multiple lan-
guages into a single translingual vector space.
We explore two variants to create these pro-
jections: Oriented Principal Component Anal-
ysis (OPCA) and Coupled Probabilistic Latent
Semantic Analysis (CPLSA). Both of these
variants start with a basic model of docu-
ments (PCA and PLSA). Each model is then
made discriminative by encouraging compa-
rable document pairs to have similar vector
representations. We evaluate these algorithms
on two tasks: parallel document retrieval
for Wikipedia and Europarl documents, and
cross-lingual text classification on Reuters.
The two discriminative variants, OPCA and
CPLSA, significantly outperform their corre-
sponding baselines. The largest differences in
performance are observed on the task of re-
trieval when the documents are only compa-
rable and not parallel. The OPCA method is
shown to perform best.

1 Introduction

Given the growth of multiple languages on the In-
ternet, Natural Language Processing must operate
on dozens of languages. It is becoming critical that
computers reach high performance on the following
two tasks:

• Comparable and parallel document re-
trieval — Cross-language information retrieval
and text categorization have become impor-
tant with the growth of the Web (Oard and
Diekema, 1998). In addition, machine trans-
lation (MT) systems can be improved by

training on sentences extracted from paral-
lel or comparable documents mined from the
Web (Munteanu and Marcu, 2005). Compa-
rable documents can also be used for learning
word-level translation lexicons (Fung and Yee,
1998; Rapp, 1999).

• Cross-language text categorization — Appli-
cations of text categorization, such as sentiment
classification (Pang et al., 2002), are now re-
quired to run on multiple languages. Catego-
rization is usually trained on the language of
the developer: it needs to be easily extended to
other languages.

There are two broad approaches to comparable
document retrieval and cross-language text catego-
rization. One approach is to translate queries or a
training set from different languages into a single
target language. Standard monolingual retrieval and
classification algorithms can then be applied in the
target language.

Alternatively, a cross-language system can project
a bag-of-words vector into a translingual lower-
dimensional vector space. Ideally, vectors in this
space represent the semantics of a document, inde-
pendent of the language.

The advantage of pre-translation is that MT sys-
tems tend to preserve the meaning of documents.
However, MT can be very slow (more than 1 second
per document), preventing its use on large training
sets. When full MT is not practical, a fast word-by-
word translation model can be used instead, (Balles-
teros and Croft, 1996) but may be less accurate.

Conversely, applying a projection into a low-
dimensional space is quick. Linear projection al-
gorithms use matrix-sparse vector multiplication,
which can be easily parallelized. However, as seen
in section 3, the accuracies of previous projection



techniques are not as high as machine translation.
This paper presents two techniques: Oriented

PCA and Coupled PLSA. These techniques retain
the high speed of projection, while approaching or
exceeding the quality level of word glossing. We im-
prove the quality of the projections by the use of dis-
criminative training: we minimize the difference be-
tween comparable documents in the projected vec-
tor space. Oriented PCA minimizes the difference
by modifying the eigensystem of PCA (Diamantaras
and Kung, 1996), while Coupled PLSA uses poste-
rior regularization (Graca et al., 2008; Ganchev et
al., 2009) on the topic assignments of the compara-
ble documents.

1.1 Previous work
There has been extensive work in projecting mono-
lingual documents into a vector space. The ini-
tial algorithm for projecting documents was Latent
Semantic Analysis (LSA), which modeled bag-of-
word vectors as low-rank Gaussians (Deerwester et
al., 1990). Subsequent projection algorithms were
based on generative models of individual terms in
the documents, including Probabilistic Latent Se-
mantic Analysis (PLSA) (Hofmann, 1999) and La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).

Work on cross-lingual projections followed a sim-
ilar pattern of moving from Gaussian models to
term-wise generative models. Cross-language La-
tent Semantic Indexing (CL-LSI) (Dumais et al.,
1997) applied LSA to concatenated comparable doc-
uments from multiple languages. Similarly, Polylin-
gual Topic Models (PLTM) (Mimno et al., 2009)
generalized LDA to tuples of documents from mul-
tiple languages. The experiments in section 3 use
CL-LSI and an algorithm similar to PLTM as bench-
marks.

The closest previous work to this paper is the
use of Canonical Correlation Analysis (CCA) to find
projections for multiple languages whose results are
maximally correlated with each other (Vinokourov
et al., 2003).

PLSA-, LDA-, and CCA-based cross-lingual
models have also been trained without the use of par-
allel or comparable documents, using only knowl-
edge from a translation dictionary to achieve sharing
of topics across languages (Haghighi et al., 2008; Ja-
garlamudi and Daumé, 2010; Zhang et al., 2010).

Such work is complementary to ours and can be
used to extend the models to domains lacking par-
allel documents.

Outside of NLP, researchers have designed al-
gorithms to find discriminative projections. We
build on the Oriented Principal Component Analysis
(OPCA) algorithm (Diamantaras and Kung, 1996),
which finds projections that maximize a signal-to-
noise ratio (as defined by the user). OPCA has been
used to create discriminative features for audio fin-
gerprinting (Burges et al., 2003).

1.2 Structure of paper

This paper now presents two algorithms for translin-
gual document projection (in section 2): OPCA and
Coupled PLSA (CPLSA). To explain OPCA, we
first review CL-LSI in section 2.1, then discuss the
details of OPCA (section 2.2), and compare it to
CCA (section 2.3). To explain CPLSA, we first
introduce Joint PLSA (JPLSA), analogous to CL-
LSI, in section 2.4, and then describe the details of
CPLSA (section 2.5).

We have evaluated these algorithms on two dif-
ferent tasks: comparable document retrieval (sec-
tion 3.2) and cross-language text categorization
(section 3.3). We discuss the findings of the evalua-
tions and extensions to the algorithms in section 4.

2 Algorithms for translingual document
projection

2.1 Cross-language Latent Semantic Indexing

Cross-language Latent Semantic Indexing (CL-LSI)
is Latent Semantic Analysis (LSA) applied to multi-
ple languages. First, we review the mathematics of
LSA.

LSA models an n × k document-term matrix D,
where n is the number of documents and k is the
number of terms. The model of the document-term
matrix is a low-rank Gaussian. Originally, LSA was
presented as performing a Singular Value Decompo-
sition (Deerwester et al., 1990), but here we present
it as eigendecomposition, to clarify its relationship
with OPCA.

LSA first computes the correlation matrix be-
tween terms:

C = DTD. (1)



The Rayleigh quotient for a vector ~v with the matrix
C is

~vTC~v

~vT~v
, (2)

and is equal to the variance of the data projected us-
ing the vector ~v, normalized by the length of ~v, if D
has columns that are zero mean. Good projections
retain a large amount of variance. LSA maximizes
the Rayleigh ratio by taking its derivative against ~v
and setting it to zero. This yields a set of projections
that are eigenvectors of C,

C~vj = λj~vj , (3)

where λj is the jth-largest eigenvalue. Each eigen-
value is also the variance of the data when projected
by the corresponding eigenvector ~vj . LSA simply
uses top d eigenvectors as projections.

LSA is very similar to Principal Components
Analysis (PCA). The only difference is that the cor-
relation matrix C is used, instead of the covariance
matrix. In practice, the document-term matrix D is
sparse, so the column means are close to zero, and
the correlation matrix is close to the covariance ma-
trix.

There are a number of methods to form the
document-term matrix D. One method that works
well in practice is to compute the log(tf)-idf weight-
ing: (Dumais, 1990; Wild et al., 2005)

Dij = log2(fij + 1) log2(n/dj), (4)

where fij is the number of times term j occurs in
document i, n is the total number of documents,
and dj is the total number of documents that con-
tain term j. Applying a logarthm to the term counts
makes the distribution of matrix entries approach
Gaussian, which makes the LSA model more valid.

Cross-language LSI is an application of LSA
where each row of D is formed by concatenating
comparable or parallel documents in multiple lan-
guages. If a single term occurs in multiple lan-
guages, the term only has one slot in the concate-
nation, and the term count accumulates for all lan-
guages. Such terms could be proper nouns, such as
“Smith” or “Merkel”.

In general, the elements of D are computed via

Dij = log2

(∑
m

fmij + 1

)
log2(n/dj), (5)

where fmij is the number of times term j occurs in
document i in language m. Here, dj is the number
of documents term j appears in, and n is the total
number of documents across all languages.

Because CL-LSI is simply LSA applied to con-
catenated documents, it models terms in document
vectors jointly across languages as a single low-rank
Gaussian.

2.2 Oriented Principal Component Analysis
The limitations of CL-LSI can be illustrated by con-
sidering Oriented Principal Components Analysis
(OPCA), a generalization of PCA. A user of OPCA
computes a signal covariance matrix S and a noise
covariance matrix N. OPCA projections ~vj max-
imize the ratio of the variance of the signal pro-
jected by ~vj to the variance of the noise projected
by ~vj . This signal-to-noise ratio is the generalized
Rayleigh quotient: (Diamantaras and Kung, 1996)

~vTS~v

~vTN~v
. (6)

Taking the derivative of the Rayleigh quotient with
respect to the projections ~v and setting it to zero
yields the generalized eigenproblem

S~vj = λjN~vj . (7)

This eigenproblem has no local minima, and can be
solved with commonly available parallel code.

PCA is a specialization of OPCA, where the noise
covariance matrix is assumed to be the identity (i.e.,
uncorrelated noise). PCA projections maximize the
signal-to-noise ratio where the signal is the empiri-
cal covariance of the data, and the noise is spherical
white noise. PCA projections are not truly appropri-
ate for forming multilingual document projections.

Instead, we want multilingual document projec-
tions to maximize the projected covariance of doc-
ument vectors across all languages, while simulta-
neously minimizing the projected distance between
comparable documents (see Figure 1). OPCA gives
us a framework for finding such discriminative pro-
jections. The covariance matrix for all documents
is the signal covariance in OPCA, and captures the
meaning of documents across all languages. The
projection of this covariance matrix should be max-
imized. The covariance matrix formed from differ-
ences between comparable documents is the noise



covariance in OPCA: we wish to minimize the lat-
ter covariance, to make the projection language-
independent.

Specifically, we create the weighted document-
term matrix Dm for each language:

Dij,m = log2(f
m
ij + 1)log2(n/dj). (8)

We then derive a signal covariance matrix over all
languages:

S =
∑
m

DT
mDm/n− ~µ~µT , (9)

where ~µ is the mean of the sum of all Dm over their
columns, and a noise covariance matrix,

N =
∑
m

(Dm −D)T (Dm −D)/n+ γI, (10)

where D is the mean across all languages of the
document-term matrix,

D =
1

M

∑
m

Dm, (11)

and M is the number of languages. Applying equa-
tion (7) to these matrices and taking the top gener-
alized eigenvectors yields the projection matrix for
OPCA.

Note the regularization term of γI in equation
(10). The empirical sample of comparable docu-
ments may not cover the entire space of translation
noise the system will encounter in the test set. For
safety, we add a regularizer that prevents the vari-
ance of a term from getting too small. We tuned γ
on the development sets in section 3.2: for log(tf)-
idf weighted vectors, C = 0.1 works well for the
data sets and dimensionalities that we tried. We use
C = 0.1 for all final tests.

2.3 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a tech-
nique that is related to OPCA. CCA was kernelized
and applied to creating cross-language document
models by (Vinokourov et al., 2003). In CCA, a lin-
ear projection is found for each language, such that
the projections of the corpus from each language are
maximally correlated with each other. Similar to
OPCA, this linear projection can be found by find-
ing the top generalized eigenvectors of the system
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Maximizes overall variance

… while minimizing distance 

between comparable pairs

Figure 1: OPCA finds a projection that maximizes the
variance of all documents, while minimizing distance be-
tween comparable documents

(7), where S is now a matrix of cross-correlations
that the projection maximizes,

S =

[
0 C12

C21 0

]
, (12)

and N is a matrix of autocorrelations that the projec-
tion minimizes,

N =

[
C11 + γI 0

0 C22 + γI

]
. (13)

Here, Cij is the (cross-)covariance matrix, with di-
mension equal to the vocabulary size, that is com-
puted between the document vectors for languages
i and j. Analogous to OPCA, γ is a regularization
term, set by optimizing performance on a validation
set. Like OPCA, these matrices can be generalized
to more than two languages. Unlike OPCA, CCA
finds projections that maximize the cross-covariance
between the projected vectors, instead of minimiz-
ing Euclidean distance.1

By definition, CCA cannot take advantage of the
information that same term occurs simultaneously in
comparable documents. As shown in section 3, this

1Note that the eigenvectors have length equal to the sum of
the length of the vocabularies of each language. The projections
for each language are created by splitting the eigenvectors into
sections, each with length equal to the vocabulary size for each
language.



information is useful and helps OPCA perform bet-
ter then CCA. In addition, CCA encourages compa-
rable documents to be projected to vectors that are
mutually linearly predictable. This is not the same
OPCA’s projected vectors that have low Euclidean
distance: the latter may be preferred by algorithms
that consume the projections.

2.4 Cross-language Topic Models

We now turn to a baseline generative model that
is analogous to CL-LSI. Our baseline joint PLSA
model (JPLSA) is closely related to the poly-lingual
LDA model of (Mimno et al., 2009). The graphical
model for JPLSA is shown at the top in Figure 2.
We describe the model for two languages, but it is
straightforward to generalize to more than two lan-
guages, as in (Mimno et al., 2009).
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Figure 2: Graphical models for JPLSA (top) and CPLSA
(bottom)

The model sees documents di as sequences of
words w1, w2, . . . , wni from a vocabulary V . There
are T cross-language topics, each of which has a dis-
tribution φt over words in V . In the case of mod-
els for two languages, we define the vocabulary V
to contain word types from both languages. In this
way, each topic is shared across languages.

Each topic-specific distribution φt, for t =
1 . . . T , is drawn from a symmetric Dirichlet prior
with concentration parameter β. Given the topic-
specific word distributions, the generative process
for a corpus of paired documents [d1i , d

2
i ] in two lan-

guages L1 and L2 is described in the next paragraph.
For each pair of documents, pick a distribution

over topics θi, from a symmetric Dirichlet prior with

concentration parameter α. Then generate the doc-
uments d1i and d2i in turn. Each word token in each
document is generated independently by first pick-
ing a topic z from a multinomial distribution with
parameter θi (MULTI(θi)), and then generating the
word token from the topic-specific word distribution
for the chosen topic MULTI(φz).

The probability of a document pair [d1, d2] with
words [w1

1, w
1
2, . . . , w

1
n1
], [w2

1, w
2
2, . . . , w

2
n2
], topic

assignments [z11 , . . . , z
1
n1
], [z21 , . . . , z

2
n2
], and a com-

mon topic vector θ is given by:

P (θ|α)
n1∏
j=1

P (z1j |θ)P (w1
j |φz1j )

n2∏
j=1

P (z2j |θ)P (w2
j |φz2j )

The difference between the JPLSA model and the
poly-lingual topic model of (Mimno et al., 2009)
is that we merge the vocabularies in the two lan-
guages and learn topic-specific word distributions
over these merged vocabularies, instead of having
pairs of topic-specific word distributions, one for
each language, like in (Mimno et al., 2009). Thus
our model is more similar to the CL-LSI model, be-
cause it can be seen as viewing a pair of documents
in two languages as one bigger document containing
the words in both documents.

Another difference between our model and the
poly-lingual LDA model of (Mimno et al., 2009)
is that we use maximum aposteriori (MAP) instead
of Bayesian inference. Recently, MAP inference
was shown to perform comparably to the best in-
ference method for LDA (Asuncion et al., 2009),
if the hyper-parameters are chosen optimally for
the inference method. Our initial experiments with
Bayesian versus MAP inference for parallel docu-
ment retrieval using JPLSA confirmed this result.
In practice our baseline model outperforms poly-
lingual LDA as mentioned in our experiments.

2.5 Coupled Probabilistic Latent Semantic
Analysis

The JPLSA model assumes that a pair of translated
or comparable documents have a common topic dis-
tribution θ. JPLSA fits its parameters to optimize the
probability of the data, given this assumption.

For the task of comparable document retrieval, we
want our topic model to assign similar topic distri-
butions θ to a pair of corresponding documents. But



this is not exactly what the JPLSA model is doing.
Instead, it derives a common topic vector θ which
explains the union of all tokens in the English and
foreign documents, instead of making sure that the
best topic assignment for the English document is
close to the best topic assignment of the foreign doc-
ument. This difference becomes especially appar-
ent when corresponding documents have different
lengths. In this case, the model will tend to derive
a topic vector θ which explains the longer document
best, making the sum of the two documents’ log-
likelihoods higher. Modeling the shorter document’s
best topic carries little weight.

Modeling both documents equally is what Cou-
pled PLSA (CPLSA) is designed to do. The graphi-
cal model for CPLSA is shown at the bottom of Fig-
ure 2. In this figure, the topic vectors of a pair of
documents in two languages are shown completely
independent. We use the log-likelihood according to
this model, but also add a regularization term, which
tries to make the topic assignments of correspond-
ing documents close. In particular, we use poste-
rior regularization (Graca et al., 2008; Ganchev et
al., 2009) to place linear constraints on the expec-
tations of topic assignments to two corresponding
documents.

For two linked documents d1 and d2, we would
like our model to be such that the expected fraction
of tokens in d1 that get assigned topic t is approxi-
mately the same as the expected fraction of tokens in
d2 that get assigned the same topic t, for each topic
t = 1 . . . T . This is exactly what we need to make
each pair of corresponding documents close.

Let z1 and z2 denote vectors of topic assignments
to the tokens in document d1 and d2, respectively.
Their dimensionality is equal to the lengths of the
two documents, n1 and n2. We define a space of
posterior distributions Q over hidden topic assign-
ments to the tokens in d1 and d2, that has the desired
property: the expected fraction of each topic is ap-
proximately equal in d1 and d2. We can formulate
this constrained space Q as follows:

Q = {q1(z1), q2(z2)}

such that

Eq1 [

∑n1
j=1 1(z

1
j = t)

n1
]−Eq2 [

∑n2
j=1 1(z

2
j = t)

n2
] ≤ εt

Eq2 [

∑n2
j=1 1(z

2
j = t)

n2
]−Eq1 [

∑n1
j=1 1(z

1
j = t)

n1
] ≤ εt

We then formulate an objective function that max-
imizes the log-likelihood of the data while simulta-
neously minimizing the KL-divergence between the
desired distribution set Q and the posterior distri-
bution according to the model: P (z1|d1, θ1, φ) and
P (z2|d2, θ2, φ).

The objective function for a single document pair
is as follows:

logP (d1|θ1, φ) + logP (d2|θ2, φ)
−KL(Q||P (z1|d1, θ1, φ), P (z2|d2, θ2, φ))
−||ε||

The final corpus-wide objective is summed over
document-pairs, and also contains terms for the
probabilities of the parameters θ and φ given the
Dirichlet priors. The norm of ε is minimized, which
makes the expected proportions of topics in two doc-
uments as close as possible.

Following (Ganchev et al., 2009), we fit the pa-
rameters by an EM-like algorithm, where for each
document pair, after finding the posterior distri-
bution of the hidden variables, we find the KL-
projection of this posterior onto the constraint set,
and take expected counts with respect to this projec-
tion; these expected counts are used in the M-step.
The projection is found using a simple projected gra-
dient algorithm.2

For both the baseline JPLSA and the CPLSA
models, we performed learning through MAP infer-
ence using EM (with a projection step for CPLSA).
We did up to 500 iterations for each model, and did
early stopping based on task performance on the de-
velopment set. The JPLSA model required more it-
erations before reaching its peak accuracy, tending
to require around 300 to 450 iterations for conver-
gence. CPLSA required fewer iterations, but each
iteration was slower due to the projection step.

2We initialized the models deterministically by assigning
each word to exactly one topic to begin with, such that all topics
have roughly the same number of words. Words were sorted by
frequency and thus words of similar frequency are more likely
to be assigned to the same topic.This initialization method out-
performed random initialization and we use it for all models.



All models use α = 1.1 and β = 1.01 for the
values of the concentration parameters. We found
that the performance of the models was not very sen-
sitive to these values, in the region that we tested
(α, β ∈ [1.001, 1.1]). Higher hyper-parameter val-
ues resulted in faster convergence, but the final per-
formance was similar across these different values.

3 Experimental validation

We test the proposed discriminative projections ver-
sus more established cross-language models on the
two tasks described in the introduction: retrieving
comparable documents from a corpus, and training
a classifier in one language and using it in another.
We measure accuracy on a test set, and also examine
the sensitivity to dimensionality of the projection on
development sets.

3.1 Speed of training and evaluation
We first test the speed of the various algorithms dis-
cussed in this paper, compared to a full machine
translation system. When finding document projec-
tions, CL-LSI, OPCA, CCA, JPLSA, and CPLSA
are equally fast: they perform a matrix multiplica-
tion and require O(nk) operations, where n is the
number of distinct words in the documents and k is
the dimensionality of the projection.3 A single CPU
core can read the indexed documents into memory
and take logarithms at 216K words per second. Pro-
jecting into a 2000-dimensional space operates at
41K words per second. Translating word-by-word
operates at 274K words per second. In contrast, ma-
chine translation processes 50 words per second, ap-
proximately 3 orders of magnitude slower.

Total training time for OPCA on 43,380 pairs of
comparable documents was 90 minutes, running on
an 8-core CPU for 2000 dimensions. On the same
corpus, JPLSA requires 31 minutes per iteration and
CPLSA requires 377 minutes per iteration. CPLSA
requires a factor of five times fewer iterations: over-
all, it is twice as slow as JPLSA.

3.2 Retrieval of comparable documents
In comparable document retrieval, a query is a doc-
ument in one language, which is compared to a cor-

3For JPLSA and CPLSA this is the case only when perform-
ing a single EM iteration at test time, which we found to per-
form best.

pus of documents in another language. By mapping
all documents into the same vector space, the com-
parison is a vector comparison. For our experiments
with CL-LSI, OPCA, and CCA, we use cosine sim-
ilarity between vectors to rank the documents.

For the JPLSA and CPLSA models, we map the
documents to corresponding topic vectors θ, and
compute distance between these probability vectors.
The mapping to topic vectors requires EM iterations,
or folding-in (Hofmann, 1999). We found that per-
forming a single EM iteration resulted in best per-
formance so we used this for all models. For com-
puting distance we used the L1-norm of the differ-
ence, which worked a bit better than the Jensen-
Shannon divergence between the topic vectors used
in (Mimno et al., 2009).

We test all algorithms on the Europarl data set
of documents in English and Spanish, and a set of
Wikipedia articles in English and Spanish that con-
tain interlanguage links between them (i.e., articles
that the Wikipedia community have identified as
comparable across languages).

For the Europarl data set, we use 52,685 doc-
uments as training, 11,933 documents as a devel-
opment set, and 18,415 documents as a final test
set. Documents are defined as speeches by a sin-
gle speaker, as in (Mimno et al., 2009).4 For the
Wikipedia set, we use 43,380 training documents,
8,675 development documents, and 8,675 final test
set documents.

For both corpora, the terms are extracted by word-
breaking all documents, removing the top 50 most
frequent terms and keeping the next 20,000 most fre-
quent terms. No stemming or folding is applied.

We assess performance by testing each document
in English against all possible documents in Span-
ish, and vice versa. We measure the Top-1 accu-
racy (i.e., whether the true comparable is the clos-
est in the test set), and the Mean Reciprocal Rank
of the true comparable, and report the average per-
formance over the two retrieval directions. Ties are
counted as errors.

We tuned the dimensionality of the projections on
the development set, as shown in Figures 3 and 4.

4The training section contains documents from the years 96
through 99 and the year 02; the dev section contains documents
from 01, and the test section contains documents from 00 plus
the first 9 months of 03.



We chose the best dimension on the development set
for each algorithm, and used it on the final test set.
The regularization γ was tuned for CCA: γ = 10 for
Europarl, and γ = 3 for Wikipedia.

Figure 3: Mean reciprocal rank versus dimension for Eu-
roparl

Figure 4: Mean reciprocal rank versus dimension for
Wikipedia

In the two figures, we evaluate the five projec-
tion methods, as well as a word-by-word transla-
tion method (denoted by WbW in the graphs). Here
“word-by-word” refers to using cosine distance after
applying a word-by-word translation model to the
Spanish documents.

The word-by-word translation model was trained
on the Europarl training set, using the WDHMM
model (He, 2007), which performs similarly to IBM

Model 4. The probability matrix of generating
English words from Spanish words was multiplied
by each document’s log(tf)-idf vector to produce a
translated document vector. We found that multi-
plying the probability matrix to the log(tf)-idf vector
was more accurate on the development set than mul-
tiplying the tf vector directly. This vector was either
tested as-is, or mapped through LSA learned from
the English training set of the corpus. In the figures,
the dimensionality of WbW translation refers to the
dimensionality of monolingual LSA.

The overall ordering of the six models is dif-
ferent for the Europarl and Wikipedia development
datasets. The discriminative models outperform
the corresponding generative ones (OPCA vs CL-
LSI) and (CPLSA vs JPLSA) for both datasets, and
OPCA performs best overall, dominating the best
fast-translation based model, as well as the other
projection methods, including CCA.

On Europarl, JPLSA and CPLSA outperform CL-
LSI, with the best dimension or JPLSA also slightly
outperforming the best setting for the word-by-word
translation model, whereas on Wikipedia the PLSA-
based models are significantly worse than the other
models.

The results on the final test set, evaluating each
model using its best dimensionality setting, confirm
the trends observed on the development set. The fi-
nal results are shown in Tables 1 and 2. For these
experiments, we use the unpaired t-test with Bon-
ferroni correction to determine the smallest set of
algorithms that have statistically significantly better
accuracy than the rest. The p-value threshold for sig-
nificance is chosen to be 0.05. The accuracies for
these significantly superior algorithms are shown in
boldface.

For Wikipedia and Europarl, we include an ad-
ditional baseline model,“Untranslated”: this refers
to applying cosine distance to both the Spanish and
English documents directly (since they share some
vocabulary terms). For Wikipedia, comparable doc-
uments seem to share many common terms, so co-
sine distance between untranslated documents is a
reasonable benchmark.

From the final Europarl results we can see that the
best models can learn to retrieve parallel documents
from the narrow Europarl domain very well. All
dimensionality reduction methods can learn from



cleanly parallel data, but discriminative training can
bring additional error reduction.

In previously reported work, (Mimno et al., 2009)
evaluate parallel document retrieval using PLTM on
Europarl speeches in English and Spanish, using
training and test sets of size similar to ours. They
report an accuracy of 81.2% when restricting to test
documents of length at least 100 and using 50 topics.
JPLSA with 50 topics obtains accuracy of 98.9% for
documents of that length.

The final Wikipedia results are also similar to the
the development set results. The problem setting for
Wikipedia is different, because corresponding doc-
uments linked in Wikipedia may have widely vary-
ing degrees of parallelism. While most linked doc-
uments share some main topics, they could cover
different numbers of sub-topics at varying depths.
Thus the training data of linked documents is noisy,
which makes it hard for projection methods to learn.
The word-by-word translation model in this setting
is trained on clean, but out-of-domain parallel data
(Europarl), so it has the disadvantage that it may not
have a good coverage of the vocabulary; however,
it is not able to make use of the Wikipedia train-
ing data since it requires sentence-aligned transla-
tions. We find it encouraging that the best projection
method OPCA outperformed word-by-word trans-
lation. This means that OPCA is able to uncover
topic correspondence given only comparable docu-
ment pairs, and to learn well in this noisy setting.

The PLSA-based models fare worse on Wikipedia
document retrieval. CPLSA outperforms JPLSA
more strongly, but both are worse than CL-LSI and
even the Untranslated baseline. We think this is
partly explained by the diverse vocabulary in the het-
erogenous Wikipedia collection. All other models
use log(tf)-idf weighting, which automatically as-
signs importance weights to terms, whereas the topic
models use word counts. This weighting is very use-
ful for Wikipedia. For example, if we apply the
untranslated matching using raw word counts, the
MRR is 0.1024 on the test set, compared to 0.5383
for log(tf)-idf. We hypothesize that using a hierar-
chical topic model that automatically learns about
more general and more topic-specific words would
be helpful in this case. It is also possible that PLSA-
based models require cleaner data to learn well.

The overall conclusion is that OPCA outper-

Algorithm Dimension Accuracy MRR
OPCA 1000 0.9742 0.9806
CPLSA 1000 0.9716 0.9782
Word-by-word N/A 0.9707 0.9779
Word-by-word 5000 0.9706 0.9778
JPLSA 1000 0.9645 0.9726
CCA 1500 0.9613 0.9705
CL-LSI 3000 0.9457 0.9595
Untranslated N/A 0.1595 0.2564

Table 1: Test results for comparable document retrieval
in Europarl. Boldface indicates statistically significant
superior results.

Algorithm Dimension Accuracy MRR
OPCA 2000 0.7255 0.7734
Word-by-word N/A 0.7033 0.7467
CCA 1500 0.6894 0.7378
Word-by-word 5000 0.6786 0.7236
CL-LSI 5000 0.5302 0.6130
Untranslated N/A 0.4692 0.5383
CPLSA 200 0.4579 0.5130
JPLSA 1000 0.3322 0.3619

Table 2: Test results for comparable document retrieval
in Wikipedia. Boldface indicates statistically significant
best result.

formed all other document retrieval methods we
tested, including fast machine translation of docu-
ments. Additionally, both discriminative projection
methods outperformed their generative counterparts.

3.3 Cross-language text classification
The second task is to train a text categorization sys-
tem in one language, and test it with documents in
another. To evaluate on this task, we use the Mul-
tilingual Reuters Collection, defined and provided
by (Amini et al., 2009). We test the English/Spanish
language pair. The collection has news articles in
English and Spanish, each of which has been trans-
lated to the other by the Portage translation sys-
tem (Ueffing et al., 2007).

From the English news corpus, we take 13,131
documents as training, 1,875 documents as develop-
ment, and 1,875 documents as test. We take the En-
glish training documents translated into Spanish as
our comparable training data. For testing, we use the
entire Spanish news corpus of 12,342 documents, ei-



ther mapped with cross-lingual projection, or trans-
lated by Portage.

The data set was provided by (Amini et al.,
2009) as already-processed document vectors, using
BM25 weighting. Thus, we only test OPCA, CL-
LSI, and related methods: JPLSA and CPLSA re-
quire modeling the term counts directly.

The performance on the task is measured by clas-
sification accuracy on the six disjoint category la-
bels defined by (Amini et al., 2009). To introduce
minimal bias due to the classifier model, we use 1-
nearest neighbor on top of the cosine distance be-
tween vectors as a classifier. For all of the tech-
niques, we treated the vocabulary in each language
as completely separate, using the top 10,000 terms
from each language.

Note that no Spanish labeled data is provided
for training any of these algorithms: only English
and translated English news is labeled. The op-
timal dimension (and γ for CCA) on the devel-
opment set was chosen to maximize the accuracy
of English classification and translated English-to-
Spanish classification.

Algorithm Dim. English Spanish
Accuracy Accuracy

Full MT 50 0.8483 0.6484
OPCA 100 0.8412 0.5954
Word-by-word 50 0.8483 0.5780
CCA 150 0.8388 0.5384
Full MT N/A 0.8046 0.5323
CL-LSI 150 0.8401 0.5105
Word-by-word N/A 0.8046 0.4481

Table 3: Test results for cross-language text categoriza-
tion

The test classification accuracy is shown in Ta-
ble 3. As above, the smallest set of superior al-
gorithms as determined by Bonferroni-corrected t-
tests are shown in boldface. The results for MT and
word-by-word translation use the log(tf)-idf vector
directly for documents that were written in English,
and use a Spanish-to-English translated vector if the
document was written in Spanish. As in section 3.2,
word-by-word translation multiplied each log(tf)-idf
vector by the translation probability matrix trained
on Europarl.

The tests show that OPCA is better than CCA,

CL-LSI, plain word-by-word translation, and even
full translation for Spanish documents. However,
if we post-process full translation by an LSI model
trained on the English training set, full translation
is the most accurate. If full translation is time-
prohibitive, then OPCA is the best method: it is sig-
nificantly better than word-by-word translation fol-
lowed by LSI.

4 Discussion and Extensions

OPCA extends naturally to multiple languages.
However, it requires memory and computation time
that scales quadratically with the size of the vocab-
ulary. As the number of languages goes up, it may
become impractical to perform OPCA directly on a
large vocabulary.

Researchers have solved the problem of scaling
OPCA by using Distortion Discriminant Analysis
(DDA) (Burges et al., 2003). DDA performs OPCA
in two stages which avoids the need for solving a
very large generalized eigensystem. As future work,
DDA could be applied to mapping documents in
many languages simultaneously.

Spherical Admixture Models (Reisinger et al.,
2010) have recently been proposed that combine an
LDA-like hierarchical generative model with the use
of tf-idf representations. A similar model could be
used for CPLSA: future work will show whether
such a model can outperform OPCA.

5 Conclusions

This paper presents two different methods for creat-
ing discriminative projections: OPCA and CPLSA.
Both of these methods avoid the use of artificial
concatenated documents. Instead, they model docu-
ments in multiple languages, with the constraint that
comparable documents should map to similar loca-
tions in the projected space.

When compared to other techniques, OPCA had
the highest accuracy while still having a run-time
that allowed scaling to large data sets. We therefore
recommend the use of OPCA as a pre-processing
step for large-scale comparable document retrieval
or cross-language text categorization.
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